

RF Point Pte Ltd Exclusive RDA China Overseas Sales Agent

DATA SHEET

RDA16112

Fully Integrated, Direct Down-Conversion Satellite Receiver for DVB-S,DVB-S2&ABS

RF Point Pte Ltd Exclusive RDA China Overseas Sales Agent

Update History

Rev	Date	Author	History Description
1.0	2013-11-10		The primary datasheet
1.1	2014-03-03		Administrative update

Features

- Single-chip RF-to-baseband Satellite receiver
- CMOS Fully integrated RF front end
- Low noise and wide dynamic range zero-IF receiver
- Input frequency range: 900 to 2200 MHz
- Input signal level: -100 to 5 dBm
- More than 85dB gain control range
- Fully integrated PLL (dividers, charge pump, phase & frequency detectors, loop filters, etc.)
- Integrated RX VCO
- Integrated baseband LPF with selectable cut-off

Applications

- Set-top boxes
- Digital video recorders
- Digital television
- Satellite PC-TV
- SMATV trans-modulators (Satellite Master Antenna TV)

frequency from 4MHz to 40MHz with 1MHz step

- Integrated LNA with RF AGC
- Integrated reference oscillator (27MHz is defult)
- I²C bus interface
- Automatic gain control
- 0.11µm RF CMOS technology
- 3V to 3.6V operation
- power consumption of less than 500mW
- Lower profile packages:

RDA16112 3×3 mm QFN20

Pin assignment (20pin QFN 3×3 mm)

General Description

The RDA16112 is a fully integrated direct conversion

RF front end for DVB-S,DVB-S2&ABS digital satellite

Reception standard CMOS process. The receiving frequency range is from 900MHz to 2200MHz, and the baseband filter's bandwidth can be selected from 4MHz to 40MHz with 1MHz step.

The RDA16112 consists of a variable gain LNA, quadrature downconverter, variable IF gain amplifiers, variable low-pass filters, reference oscillator, VCOs, synthesizer and output baseband amplifier to drive external ADC.

Based on RDA's some innovative technique, the RDA16112 offers excellent phase noise and very low implementation loss, required for advanced modulation systems such as 8PSK and DVB-S2. This tuner RF IC does not require a balun and its fully integrated design saves valuable board space and simplifies RF layout.

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

Functional Block Diagram

Functional Description

The loop Ina is used to generate the loopout signal. LNA1&LNA2 are on chip variable gain LNAs are used to provide wide tuner dynamic range. A direct conversion architecture is used to convert the RF signal to in-phase and quadrature baseband signals. The signals required for direct conversion are all generated within the chip by a fully integrated PLL and a quadrature LO generator. The frequency of the VCO is set by internal PLL circuits, which are programmable via a 2-wire (I²C) serial bus. The LO signals are mixed with the RF signal input and then filtered by low-pass filters to remove the upper image produced by the mixer. A variable gain amplifier is then used to adjust the baseband signal levels before processing by the channel selection filters to optimize noise performance and prevent distortion within the filters. The channel select filters are digitally programmable low pass filters with 1MHz step from 4MHz to 40MHz. The output amplifier buffered the signal from the filters to increase the driving capability to the next baseband ADC.

Some innovative technique is used to correct and alleviate DC offsets inherent in direct conversion mixers, the channel select filters and output buffers.

Loop LNA

The loopout Ina is used to generate the loopout signal.

LNA1&LNA2

LNA1 is the first Ina and receives a signal from the LNB through external matching circuit, the input resistance is matched to $75 \,\Omega$ coaxial cable. The LNA2 is the second Ina and is used to provide wide dynamic range, the better noise figure. The gain both of Ina1 and Ina2 can be programmed with the 2-wire (I²C) interface to insure wide dynamic range of the receiver.

AGC Amplifier

The AGC Amplifier receives the IQ signals from the quadrature mixer then amplifies them and sends to the base band low pass filter. The gain is also programmed and controlled by the 2-wire (I²C) interface.

Baseband LPF

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

The bansband low-pass filter is designed to have variable cut-off frequency. The bandwidth of the LPF is selectable from 4MHz to 40MHz with 1MHz step. The DC-offset calibration can be carried out controlled by the interface. A innovative technique ensure the filter's bandwidth variety within 5%.

Reference Oscillator

The oscillator is on-chip integrated and both the crystal and crystal oscillator are supported. The 27MHz is recommended. The centre oscillation frequency can be adjusted accurately with the XAFC pin (optional function).

vco

The receiver integrates two VCOs which ensure covering the full receiving frequency from 900MHz to 2200MHz. The two VCOs can be switched between each other with relevant register and the VCO's band is programmed using 2-wire (I^2C) interface. The first VCO oscillates from 3560MHz to 6380MHz, the second oscillates from 5940MHz to 9250MHz. After divided by four, eight or sixteen, lo signal from 250(4000/16)MHz to 2150(8600/4)can be obtained.

LO frequency	Used VCO	Divider	Note
950(3800/4)≤F≤1538(6152/4)	VCO1	4	VCO1 oscillates from 3560MHz to 6380MHz.
1539(6156/4)≤F≤2150(8600/4)	VCO2	4	VCO2 oscillates from 5940MHz to 9250MHz

PLL

The fractional-N frequency synthesizer use 27MHz reference as default. The dividers, loop filters, phase&frequency detector, charge pump are all integrated on chip.

Baseband Output Amplifier

Class-AB architecture is selected for the output buffer, this makes it more flexible to the next Baseband solution's input load. The gain of this stage can also be programmed with interface to farther increase the receiver dynamic.

I²C interface

The interface is the control unit of all the analog blocks, it is provided for configuration and monitoring all internal registers, the I²C bus consists of two wires: serial clock line (SCL) and serial data line (SDA). The LNA's gain, AGC, baseband LPF's bandwidth, VCO's and crystal oscillator's current, VCO's oscillation frequency are all controlled by the 2-wire interface.

Direct AGC control

Through the AGC pin input, the receiver chain's gain can be directly controlled by the baseband solutions. The receiver gain changed inversely with the AGC control signal, this means that when AGC signal goes high, the receiver gain will drop to relevant level and vice versa.

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

Typical application circuit

Application circuit

Note:

1. The input match circuit

This circuit is optional. If it is used or not, according to the performance requirement .

There will have better S11 and reduce the low frequency block with input match circuit.

2, IQ filter circuit

This circuit is optional. If this circuit is to be use or not according to the test result of different demodulator chip and pcb.

3, Crystal circuit

The value of load capacitance is determined by the crystal parameter.

4、Clock share

Function		ON	OFF
Lies DD's slook		Connected to XTAL1	Delete C2
Use BB's clock		C3=10nF	Delete C5
	Vout	R1=4.7K and connected to Vcc, Delete R2	
Share clock for BB	Aout	C2=10nF Delete C1	Doloto D1 D2 C1 C2
(Use xout and xtal2 are both ok)	XTAL2	R2=0 and connected to GND, Delete R1	Delete K1,K2,C1,C2
		C1=10nF Delete C2	

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

If these circuits are used or not, according to the solution requirement and test result.

Pin Description

Pin number	Name	I/O	DESCRIPTION					
1	RFIP	I	RF Positive Input					
2	GND.							
3	LOOP.	0	LOOPOUT					
4	ADD	I I	I2C bus address selection terminal. Allowing the use of more than one device					
			per I2C bus system by the voltage on this pin.					
			See Table 8 for programming details.					
5	AGC	-	AGC control input from baseband solutions					
6	XOUT_EN	T	To control the XOUT pin to send out the buffed xtal signal or not					
			If GND,XOUT=Off; If VDD,XOUT=On					
7	GND.							
8	XOUT	I	Buffered Crystal oscillator output for BaseBand solution					
9	XTAL2	I/O	Connect to Crystal (27MHz is recommanded)					
10	XTAL1	I/O	Connect to Crystal (if using external crystal oscillator, this pin connect to the					
			oscillator's output)					
11	DVDD	0	Output of the supply voltage for Digital, Connected to cap					
12	BBIP	0	Positive Baseband I Channel Out					
13	BBIN	0	Negative Baseband I Channel Out					
14	BBQN	0	Negative Baseband Q Channel Out					
15	BBQP	0	Positive Baseband Q Channel Out					
16	Vcc	I	Supply voltage for 16112. Connected to 3.3 V.					

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

17	SDA	I/O	Serial data input/output, connected to 3.3V with 10k Ω resistor
18	SCLK	I	Serial clock input
19	Vcc	I	Supply voltage for 16112. Connected to 3.3 V.
20	GND.		

Electrical Specifications

Table 1 Recommended Operating Conditions

Parameter	Symbol	MIN	ТҮР	MAX	UNIT
Analog Supply Voltage	AVDD	3	3.3	+3.6	V
Ambient Temperature	T _A	-25	27	+85	C

Table 2 DC Electrical Specification

Parameter	Symbol	MIN	ТҮР	MAX	UNIT
CMOS Low Level Input Voltage	VIL	0		0.3*VDD	V
CMOS High Level Input Voltage	V _{IH}	0.7*VDD		VDD	V
CMOS Threshold Voltage	V _{TH}		0.5*VDD		V

Table 3 Power consumption specification

(VDD =3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

Symbol	Description	Condition	MIN	ТҮР	MAX	UNIT
ICC	Receiver on			150	155	mA
ICC(standby)	tuner Disabled	PDN=1,Enable=0,Rxon=0		29		mA

Table 4 System Characteristics

(VDD = 3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

Parameter	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
RF input frequency	f _{IN}		900		2200	MHz
Minimum RF input	RFIL	4.42MS/s, QPSK3/4, noise free		-99	-96	dBm
Maximum RF input	RFIH	4.42MS/s, QPSK3/4, noise free		5	7	dBm
Minimum RF input	RFIL	45MS/s, QPSK3/4, noise free		-87	-85	dBm
Maximum RF input	RFIH	45MS/s, QPSK3/4, noise free		5	7	dBm
IQ amplitude balance	IQAB			0.2	0.5	dB
IQ phase balance	IQPB			0.3	0.5	Deg
Minimum voltage	Gv(min)	AGCIN set to maximum		5		dB
conversion gain		(3.3 V)				
Maximum voltage	Gv(max)	AGCIN set to minimum		85		dB

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

conversion ga	lin		(0).1V)				
Voltage conve	ersion gain	Gv(step)				0.2		dB
step								
Matched input	t resistance	R _{IN}	After	matching		75		Ω
Power up sett	ing time	PUST				5		ms
Input reflection	n	S11	After	matching		-8	-7	dB
coefficient								
Paramete	er		SYMBOL	CONDITIONS	MIN	TYF	P MAX	X UNIT
	Noise Figu	re	NF	Max Gain		3.2	4.8	dB
				(Minimum AGC)				
	Input refered third-order		IIP3	Minimum Gain		7	9	dBm
Main	intercept			(Maximum AGC)				
Channol	Input refere	ed	IIP2	Minimum Gain	K	72	74	dBm
Channel	econd-orde	econd-order intercept		(Maximum				
				AGC)				
	Gain flatne	ss over	GF	Input freq		4	5	dB
	frequency			900 to 2250MHz				

Paramete	er	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
	Noise Figure	NF	Max Gain	5.5	5.7	7.5	dB
			(Minimum AGC)				
	Input refered third-order	IIP3	Minimum Gain	2	4	6	dBm
Loop	intercept		(Maximum AGC)				
Channel	Input refered	IIP2	Minimum Gain		57		dBm
Ghannei	second-order intercept		(Maximum				
			AGC)				
	Gain	Gain	Input freq	2	3	3.5	dB
			900 to 2250MHz				

Table 5 Frequency Synthesizer Characteristics

(VDD = 3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
t _{sw}	RX Switch on time			200		us
f _{RFLO}	synthesizer frequency		900		2200	MHz
PN1	Phase noise	∆f=1kHz		-88	-81	dBc/Hz
PN2		∆f=10kHz	-100	-95	-90	dBc/Hz
PN3		Δf=100kHz	-110	-105	-100	dBc/Hz
PN4		Δf=1MHz	-138	-133	-130	dBc/Hz

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Parameter	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
3 dB baseband filter	BBF(3dB)		4		40	MHz
bandwidth						
Cutoff frequency accuracy	FC				+/-5	%
at -3dB						
LPF 2fc attenuation	LPF ATT1		25			dB
Flatness	FLTN			0.5	1	dBpp
Group delay	Td(g)			2		ps
Maximum differential		Clipping level		0.9*VDD		Vpp
output voltage						
Output common mode			0.3*VDD	0.5*VDD	0.6*VDD	V
voltage			4			
Differential Output offset				30		mV
voltage						
IQ output impedance			25	45	55	Ω
Output Amplifier minimum			1K			Ω
load impedance						
Output Anplifier maximum					10	pF
Load capacitance						

Table 6 Baseband LPF and Output Amplifier Characteristics

Table7 XTAL&XOUT Characteristics

(VDD = 3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

XOUT common mode voltage

Parameter	SYMBOL	MIN	TYP	MAX	UNIT
XTAL differential output voltage		550	1200	1420	mVpp
XTAL common mode voltage			0.6		V
		<u> </u>			
Parameter	SYMBOL	MIN	TYP	MAX	UNIT
XOUT differential output voltage			1250		mVpp

0.8

V

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Control Interface

I²C Address selection Table 8

MA1	MA0	ADD input voltage	
0	0	0 V	
1	0	Open	
1	1	VDD	
haracteristics		. + . (\sim
₄ = -25 to 85 °C, unle	ss otherwise s	specified)	

I²C bus characteristics Table 9

(VDD = 3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

PARAMETER	SYMBOL	Test Condition	MIN	ТҮР	MAX	UNIT
SCL Clock Frequency	f _{SCL}		0		400	kHz
Bus Free Time between START						
and STOP Condition	t _{BUF}		1.3			μs
Hold Time (repeated) START						
Condition. (After this period, the		X				
first clock pulse is generated.)	T _{HD, STA}		0.6			μs
LOW Period of SCL Clock	tLOW		1.3			μs
HIGH Period of SCL Clock	thigh		0.6			μs
Data Setup Time	t _{SU,DAT}		100			ns
Data Hold Time	t _{hd,dat}		0		0.9	μs
SCL and SDA Rise and Fall Time	t _f ,t _f				300	ns
Setup Time for a Repeated						
START Condition	t _{sy,sta}		0.6			μs
Setup Time for STOP Condition	t _{su,sто}		0.6			μs
Capacitive Load for each Bus						
Line	C _B				400	pF

RF Point Pte Ltd Exclusive RDA China Overseas Sales Agent

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

Package Outline

20-Pin 3x3 Quad Flat No-Lead (QFN)

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

Solder Mounting Condition

Classification Reflow Profile

Exclusive RDA China Overseas Sales Agent

Table-I Classification Reflow Profiles						
Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly				
Average Ramp-Up Rate	3 °C/second max.	3 °C/second max.				
(T _{Smax} to T _p)						
Preheat						
-Temperature Min (T _{smin})	100 °C	150 °C				
-Temperature Max (T _{smax})	100 °C	200 °C				
-Time (t_{smin} to t_{smax})	60-120 seconds	60-180 seconds				
Time maintained above:						
-Temperature (T _L)	183 °C	217°C				
-Time (t _L)	60-150seconds	60-150 seconds				
Peak /Classification Temperature(T _p)	See Table-II	See Table-III				
Time within 5 °C of actual Peak Temperature (t _p)	10-30 seconds	20-40 seconds				
Ramp-Down Rate	6 °C/second max.	6 °C/seconds max.				
Time 25 °C to Peak Temperature	6 minutes max.	8 minutes max.				

Table – II SnPb Eutectic Process – Package Peak Reflow Temperatures

Package Thickness	Volume mm ³ <350	Volume mm ³ ≥350
<2.5mm	240 + 0/-5 ° C	225 + 0/-5 ° C
≥2.5mm	225 + 0/-5 ° C	225 + 0/-5 ° C

Table – III Pb-free Process – Package Classification Reflow Temperatures						
Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000			
<1.6mm	260 + 0 ° C *	260 + 0 ° C *	260 + 0 ° C *			
1.6mm – 2.5mm	260 + 0 ° C *	250 + 0 ° C *	245 + 0 ° C *			
≥ 2.5mm	250 + 0 ° C *	245 + 0 ° C *	245 + 0 ° C *			
*Tolerance : The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature(this mean Peak reflow temperature + 0° C. For example 260+ 0° C) at the rated MSL Level.						

Note 1: All temperature refer topside of the package. Measured on the package body surface.

Note 2: The profiling tolerance is + 0 °C, - X °C (based on machine variation capability)whatever

is required to control the profile process but at no time will it exceed - 5 °C. The producer assures process compatibility at the peak reflow profile temperatures defined in Table –III.

- **Note 3:** Package volume excludes external terminals(balls, bumps, lands, leads) and/or non integral heat sinks.
- Note 4: The maximum component temperature reached during reflow depends on package the thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of SMD package may sill exist.
- Note 5: Components intended for use in a "lead-free" assembly process shall be evaluated using the "lead free" classification temperatures and profiles defined in Table-I II III whether or not lead free.

Table 10 Junction Temperature specification

(VDD =3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

Symbol	Description	Condition	MIN	TYP	MAX	UNIT
ΘjA	Junction to Ambient			29.4		%√∿
	Thermal Resistance					
Tj	Junction	Ta (Ambient Temperature) -25 ℃	-10	-8.5	-7	ů
	Temperature					
Tj	Junction	Ta (Ambient Temperature) 25 °C	40	41.5	43	ů
	Temperature					
Tj	Junction	Ta (Ambient Temperature) 85 ℃	100	101.5	103	°C
	Temperature					

Note: Tj = Ta + Θ jA * Power Consumption, MIN value comes from 3.0v VDD, TYP value comes from 3.3v VDD, MAX value comes from 3.6v VDD.

The information contained herein is the exclusive property of RDA and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of RDA.

Table 11	Absolute Maximum ratings			
Symbol	Description	MIN	MAX	UNIT
VDD	Power supply voltage	-0.3	3.6	V
T _{oper}	Operating ambient Temperature	-25	85	°C
Tj	Junction Temperature		125	°C

RoHS Compliant

The product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE), and are therefore considered RoHS compliant.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electricity. Proper ESD techniques should be used when handling these devices.

RF Point Pte Ltd Exclusive RDA China Overseas Sales Agent

Disclaimer

The information provided here is believed to be reliable; RDA Microelectronics assumes no reliability for inaccuracies and omissions. RDA Microelectronics assumes no reliability for the use of this information and all such information should entirely be at the user's own risk. Specifications described and contained here are subjected to change without notice on the purpose of improving the design and performance. All of this information described herein should not be implied or granted for any third party. RDA Microelectronics does not authorize or warrant any RDA products for use in the life support devices or systems. Copyright @ 2014 RDA Microelectronics Inc. All rights reserved.

For technical questions and additional information about RDA Microelectronics Inc.:

Website: <u>www.rdamicro.com</u> Mailbox: <u>info@rdamicro.com</u> RDA Microelectronics (Shanghai), Inc. Tel: +86-21-50271108 Fax: +86-21-50271099

RDA Microelectronics (Beijing), Inc. Tel: +86-10-63635360 Fax: +86-10-82612663

For Sales office : RF Point Pte Ltd 362 Upper Paya Lebar #04-10 Da Jin Factory Building Singapore 534963 Tel: +65-98636485 Mailbox:RF.Point@yahoo.com