

DATA SHEET

RDA16110SW

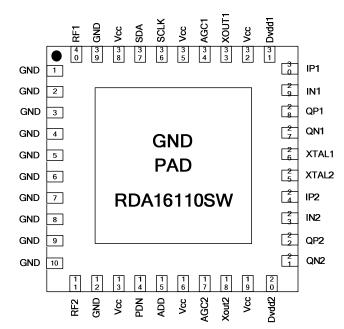
Fully Integrated Satellite Dual Receiver for DVB-S/S2 with RF switch integrated

RDA Microelectronics, Inc.

Update History

Rev	Date	Author	History Description
1.0	2013-12-12		The primary datasheet
1.2	2014-02-25		Pin definiation correction (pg 10)

Features


- Single-chip Two channels RF-to-baseband Satellite receiver
- RF switches integrated
- CMOS Fully integrated RF front end
- Low noise and wide dynamic range zero-IF receiver
- Input frequency range: 900 to 2200 MHz
- Input signal level: -80 to 0 dBm
- More than 80dB gain control range
- Fully integrated PLL (dividers, charge pump, phase & frequency detectors, loop filters, etc.)
- Integrated RX VCO

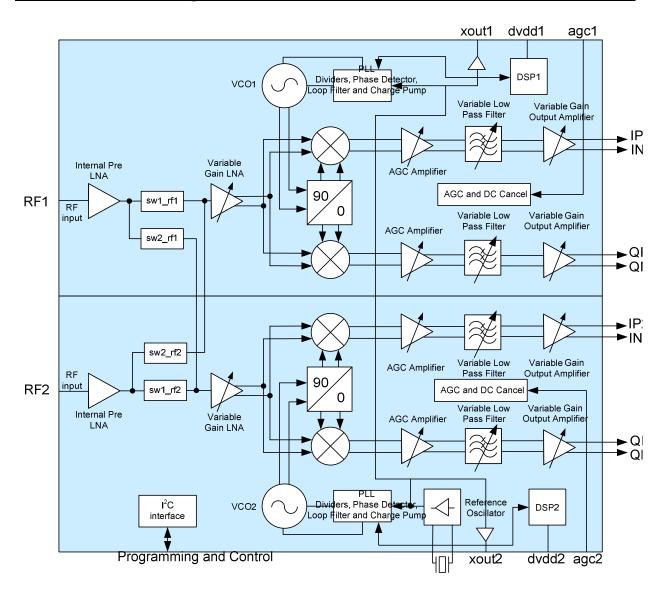
- Integrated baseband LPF with selectable cut-off frequency from 4MHz to 40MHz with 1MHz step
- Integrated LNA with RF AGC
- Integrated reference oscillator (27MHz is defult)
- I²C bus interface
- Automatic gain control
- 0.11 µm RF CMOS technology
- 3V to 3.6V operation
- 5×5 mm QFN40

Applications

- Set-top boxes
- Digital video recorders
- Digital television
- Satellite PC-TV

Pin assignment (40 pin QFN 5×5 mm)

General Description


The RDA16110SW is a two-channels fully integrated direct-convertion RF front end for DVB-S2 application.

There have two channels intergrated in RDA16110SW, each channel can be saperately controlled trough the I2C bus. With the RF switches, the two RF input signals can be switched between each other after setting the different switching modes.

The receiving frequency range is from 900MHz to 2200MHz, and the baseband filter's bandwidth can be selected from 4MHz to 40MHz with 1MHz step.

Functional Block Diagram

RDA Microelectronics, Inc. RDA16110SW- Fully Integrated Satellite DVB-S/S2 dual receiver

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

Function Descriptions

As a dual-channel tuner product, RDA16110SW is made up of two individual RF cores in the silicon chip, only the Xtal clock and I2C bus are shared by the two channels. There are RF switches build at the front of variable gain LNA which enable receive of dual channel via dual RF inputs or any single RF Input. These RF switches are controlled via IIC bus.

Of each channel, there are two stages of LNA circuit in front of mixer – Internal Pre LNA and Variable Gain LNA. Variable Gain LNA is used to provide wide tuner dynamic range. Direct conversion architecture is used to convert the RF signal to in-phase and quadrature baseband signals. The signals which are required for direct conversion are all generated within the chip by fully integrated PLLs and quadrature LO generators. The frequency of the VCO is set by internal PLL circuits, which are programmable via a 2-wire (I²C) serial bus. The LO signals are mixed with the RF signal input and then filtered by low-pass filters to remove the upper image produced by the mixer. A variable gain amplifier is then used to adjust the baseband signal levels before processing by the channel selection filters to optimize noise performance and prevent distortion within the filters. The channel select filters are digital programmable low pass filters with 1MHz step from 4MHz to 40MHz. The output amplifier buffers the signal from the filters to increase the driving capability to the next baseband ADC.

Some innovative technique is used to correct and alleviate DC offsets inherent in direct conversion mixers, the channel select filters and output buffers.

LNA1&LNA2

LNA1 is the first LNA and receives signal from the LNB through external matching circuit, the input resistance is matched to $75\,\Omega$ coaxial cable. The LNA2 is the second LNA and is used to provide wide dynamic range, the better noise figure. The gains of both LNA1 and LNA2 are programmable by the 2-wire (I^2C) interface to insure wide dynamic range of the receiver.

AGC Amplifier

The AGC Amplifier receives the IQ signals from the quadrature mixer then amplifies them and sends to the base band low pass filter. The gain is also programmed and controlled by the 2-wire (I²C) interface.

Baseband LPF

The bansband low-pass filter is designed to have variable cut-off frequency. The bandwidth of the LPF is selectable from 4MHz to 40MHz with 1MHz step. The DC-offset calibration can be carried out controlled by the interface. Some innovative technique ensures the filter's bandwidth variety within 5%.

Reference Oscillator

The oscillator is on-chip integrated and both the crystal and crystal oscillator are supported. 27MHz is recommended.

RDA Microelectronics, Inc. RDA16110SW- Fully Integrated Satellite DVB-S/S2 dual receiver

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

VCO

The receiver integrates two VCOs which ensure covering the full receiving frequency from 950MHz to 2150MHz. The VCO's bands are programmed using 2-wire (I²C) interface. VCO1 can work from 3700MHz to 6640MHz, and VCO2 can work from 5920MHz to 9080MHz. On each VCO band, some registers are configured differently between low section and high section, in order to keep better performance flatness. After being divided by four, LO signal from 950(3800/4) MHz to 2150(8600/4) MHz can be obtained.

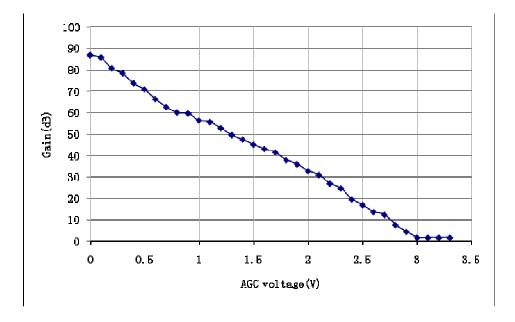
LO frequency	Used VCO	Divider	Note
950(3800/4)≤F≤1363(5452/4)	VCO1	4	VCO1 is used from 950 to 1579. Between the bands of below 1363MHz
1364(5456/4)≤F≤1579(6316/4)	VCO1	4	and upon 1364MHz, registers are fine-tuned differently.
1580(6320/4)≤F≤1862(7448/4)	VCO2	4	VCO2 is used from 1580 to 2150. Between the bands of below 1862MHz
1863(7452/4)≤F≤2150(8600/4)	VCO2	4	and upon 1863MHz, registers are fine-tuned differently.

PLL

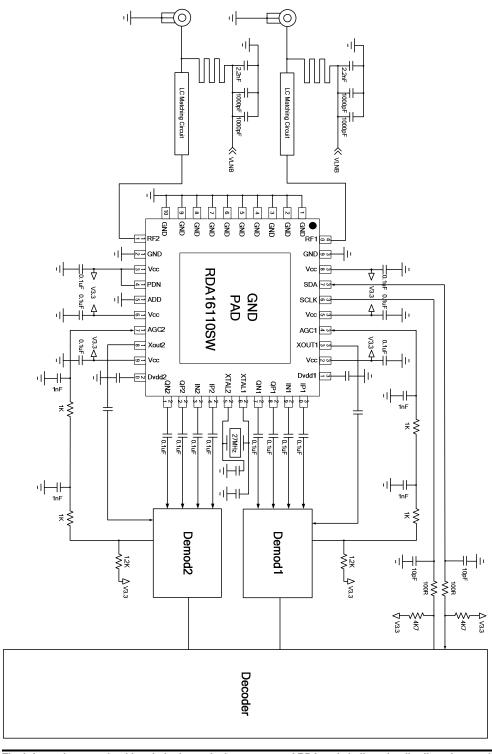
The fractional-N frequency synthesizer use 27MHz reference as default. The dividers, loop filters, phase&frequency detector, charge pump are all integrated on chip.

Baseband Output Amplifier

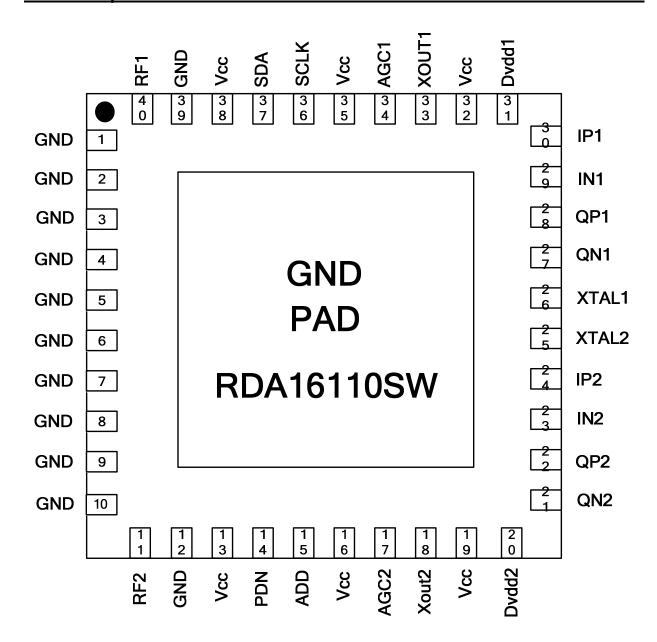
Class-AB architecture is selected for the output buffer, this makes it more flexible to the next Baseband solution's input load. The gain of this stage can also be programmed with interface to farther increase the receiver dynamic.


I²C interface

The interface is the control unit of all the analog blocks, it is provided for configuration and monitoring all internal registers, the I²C bus consists of two wires: serial clock line (SCL) and serial data line (SDA). The LNA's gain, AGC, baseband LPF's bandwidth, VCO's and crystal oscillator's current, VCO's oscillation frequency are all controlled by the 2-wire interface.


Direct AGC control

Through the AGC pin input, the receiver chain's gain can be directly controlled by the baseband solutions. The receiver gain changed inversely with the AGC control signal, this means that when AGC signal goes high, the receiver gain will drop to relevant level and vice versa.



Typical application circuit

Pin Description

RDA Microelectronics, Inc. RDA16110SW- Fully Integrated Satellite DVB-S/S2 dual receiver

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

Pin number	Name	I/O	DESCRIPTION
1~10,12,39	GND		Connected to Ground
11	RF2	1	The RF input pin for the channel 2
13	Vcc	I	Supply voltage for Channel 2, Connected to 3.3 V
14	PDN	I	Chip power control
			If low, Receiver totally power down, including the crystal oscillator.
			If High, the chip is enabled.
15	ADD	I	I2C bus address selection terminal. Allowing the use of more than one device per I2C
			bus system by the voltage on this pin.
			See Table 8 for programming details.
16	Vcc	1	Supply voltage for Channel 2, Connected to 3.3 V
17	AGC2	1	AGC control input for the channel 2
18	Xout2	0	Buffered Crystal oscillator output for demod2
19	Vcc	- 1	Supply voltage for Channel 2, Connected to 3.3 V
20	Dvcc2	0	Output of the supply voltage for channel2's dsp, Connected to cap
21	QN2	0	Negative Base-Band Q Channel2 Out
22	QP2	0	Positive Base-Band Q Channel2 Out
23	IP2	0	Positive Base-Band I Channel2 Out
24	IN2	0	Negative Base-Band I Channel2 Out
25	Xtal2	I/O	Connect to Crystal (27MHz is recommended)
26	Xtal1	I/O	Connect to Crystal (27MHz is recommended)
27	QN1	0	Negative Base-Band Q Channel1 Out
28	QP1	0	Positive Base-Band Q Channel1 Out
29	IN1	0	Positive Base-Band I Channel1 Out
30	IP1	0	Negative Base-Band I Channel Out
31	Dvcc1	0	Output of the supply voltage for channel1's DSP, Connected to cap
32	Vcc	- 1	Supply voltage for Channel 1, Connected to 3.3 V
33	Xout1	0	Buffered Crystal oscillator output for demod1
34	AGC1	1	AGC control input for the channel 1
35	Vcc	1	Supply voltage for Channel 1, Connected to 3.3 V
36	SCLK	Į.	Serial clock input
37	SDA	I/O	Serial data input/output, connected to 3.3V with 10kΩ resistor
38	Vcc	1	Supply voltage for Channel 1, Connected to 3.3 V
40	RF1	I	The RF input pin for the channel 2

Electrical Specifications

Table 1 Recommended Operating Conditions

Parameter	Symbol	MIN	TYP	MAX	UNIT
Analog Supply Voltage	AVDD	3	3.3	+3.6	V
Ambient Temperature	T _A	-25	27	+85	~

Table 2 DC Electrical Specification

Parameter	Symbol	MIN	TYP	MAX	UNIT
CMOS Low Level Input Voltage	V _{IL}	0		0.3*VDD	V
CMOS High Level Input Voltage	V _{IH}	0.7*VDD		VDD	V
CMOS Threshold Voltage	V_{TH}		0.5*VDD		V

Table 3 Power consumption specification

(VDD =3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

Symbol	Description	Condition	TYP	UNIT
ICC	Both Channels ON	Normal work	280	mA
ICC	One Channel ON	Normal work	145	mA
ICC	Standby mode	PDN = 1,Enable=0	6	mA
ICC	Sleep mode	PDN = 0	250	uA

Table 4 System Characteristics

(VDD = 3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

Parameter	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
RF input frequency	f _{IN}		900		2200	MHz
Noise Figure	NF	Max Gain		3.5	5	dB
		(Minimum AGC)				
Input refered third-order	IIP3	Minimum Gain	9.5	10	11	dBm
intercept		(Maximum AGC)				
Input refered econd-order	IIP2	Minimum Gain		60		dBm
intercept		(Maximum AGC)				
Isolation of RF1 and RF2			36	45	60	dB
Gain flatness over	GF	Input freq=900 to		4	5	dB
frequency		2250MHz				
IQ amplitude balance	IQAB				0.5	dB
IQ phase balance	IQPB				0.5	Deg
Minimum voltage	Gv(min)	AGCIN set to maximum		-2		dB
conversion gain		(3.3 V)				
Maximum voltage	Gv(max)	AGCIN set to minimum		85		dB
conversion gain		(0.1V)				
Voltage conversion gain	Gv(step)			0.2		dB
step						
Matched input resistance	R _{IN}	After matching		75		Ω
Power up setting time	PUST			1		ms
Input reflection coefficient	S11	After matching		-10		dB

Table 5 Frequency Synthesizer Characteristics

(VDD = 3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
t _{sw}	RX Switch on time			200		us
f _{RFLO}	synthesizer frequency		900		2200	MHz
PN1	Phase noise	Δf=1kHz		-88	-80	dBc/Hz
PN2		Δf=10kHz	-100	-95	-90	dBc/Hz
PN3		Δf=100kHz	-110	-105	-100	dBc/Hz
PN4		Δf=1MHz	-138	-133	-130	dBc/Hz

Table 6 Baseband LPF and Output Amplifier Characteristics

Parameter	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
3 dB baseband filter	BBF(3dB)		4		40	MHz
bandwidth						
Cutoff frequency accuracy	FC				+/-5	%
at -3dB						
LPF 2fc attenuation	LPF ATT1		25			dB
Flatness	FLTN			0.5	1	dBpp
Group delay	Td(g)			2		ps
Maximum differential		Clipping level		0.9*VDD		Vpp
output voltage						
Output common mode			0.3*VDD	0.5*VDD	0.6*VDD	V
voltage						
Differential Output offset				30		mV
voltage						
IQ output impedance			25	45	55	Ω
Output Amplifier minimum			1K			Ω
load impedance						
Output Anplifier maximum					10	pF
Load capacitance						

Table7 XTAL Characteristics

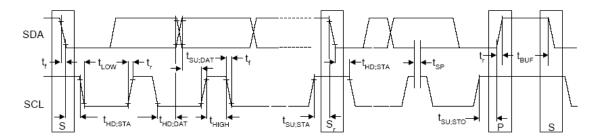
(VDD = 3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

Parameter	SYMBOL	MIN	TYP	MAX	UNIT
	XTAL2		800		
Differential output voltage	XTAL1		810		m\/nn
Differential output voltage	XOUT1		800		mVpp
	XOUT2		727		
	XTAL2		0.4		
Common mode voltage	XTAL1		0.5		V
Common mode voltage	XOUT1		0.81		ľ
	XOUT2		0.81		

Table 8 I²C Address selection

	I2C Address						
ADD input voltage	bit<7:4>	bit<3>	bit<2>	bit-	<1>		
	0001	MA1	MA0	0	1		
0 V ~ 0.1 VDD	0001	0	0	Channel_1	Channel_2		
open	0001	0	1	Channel_1	Channel_2		
0.9 VDD ~ VDD	0001	1	1	Channel_1	Channel_2		

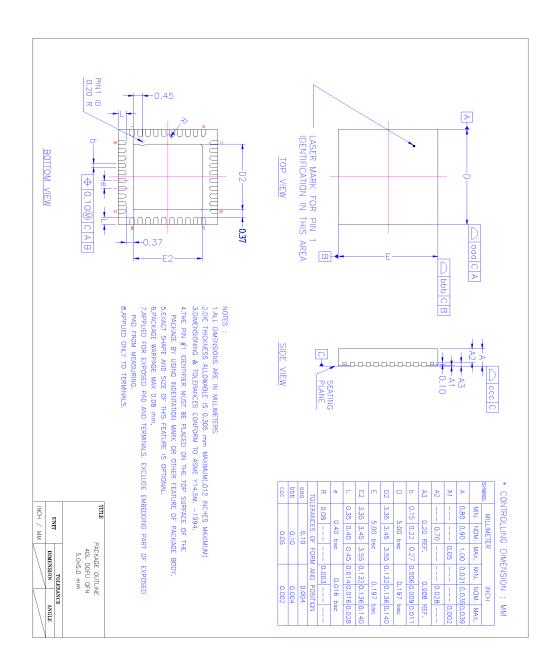
Table 9 XOUT1&XOUT2 description


XOUT_EN1(35pin)	XOUT1(33pin)
LOW	No output
HIGH	Output XTAL(crystal) frequency

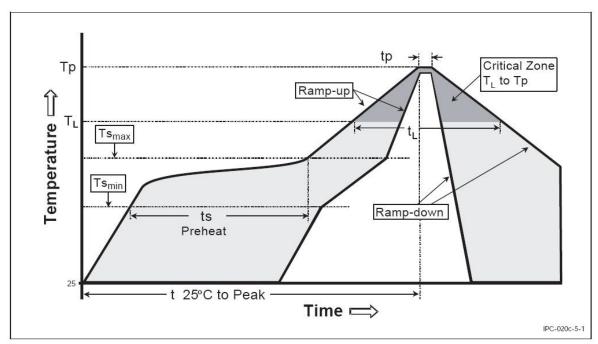
XOUT_EN2(16pin)	XOUT2(18pin)				
LOW	No output				
HIGH	Output XTAL(crystal) frequency				

Table 10 I²C bus characteristics

(VDD = 3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)


PARAMETER	SYMBOL	Test Condition	MIN	TYP	MAX	UNIT
SCL Clock Frequency	f _{SCL}		0		400	kHz
Bus Free Time between START						
and STOP Condition	t_{BUF}		1.3			μs
Hold Time (repeated) START						
Condition. (After this period, the						
first clock pulse is generated.)	$T_{HD,STA}$		0.6			μs
LOW Period of SCL Clock	t _{LOW}		1.3			μs
HIGH Period of SCL Clock	t _{HIGH}		0.6			μs
Data Setup Time	t _{SU,DAT}		100			ns
Data Hold Time	t _{HD,DAT}		0		0.9	μs
SCL and SDA Rise and Fall Time	t _f ,t _f				300	ns
Setup Time for a Repeated						
START Condition	t _{SY,STA}		0.6			μs
Setup Time for STOP Condition	t _{SU,STO}		0.6			μs
Capacitive Load for each Bus						
Line	C_B				400	pF

I²C Timing Diagram



Package Outline

40-Pin 5x5 Quad Flat No-Lead (QFN)

Solder Mounting Condition

Classification Reflow Profile

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

Table-I Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate (T _{Smax} to T _p)	3 °C/second max.	3 °C/second max.
Preheat		
-Temperature Min (T _{smin})	100 °C	150 °C
-Temperature Max (T _{smax})	100 °C	200 °C
-Time (t _{smin} to t _{smax})	60-120 seconds	60-180 seconds
Time maintained above:		
-Temperature (T _L)	183 °C	217°C
-Time (t _L)	60-150seconds	60-150 seconds
Peak /Classification Temperature(T _p)	See Table-II	See Table-III
Time within 5 °C of actual Peak Temperature (t _p)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6 °C/second max.	6 °C/seconds max.
Time 25 °C to Peak Temperature	6 minutes max.	8 minutes max.

Table – II SnPb Eutectic Process – Package Peak Reflow Temperatures

Package Thickness	Volume mm ³ <350	Volume mm³ ≥350
<2.5mm	240 + 0/-5 ° C	225 + 0/-5 ° C
≥2.5mm	225 + 0/-5 ° C	225 + 0/-5 ° C

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

Table - III Pb-free Process - Package Classification Reflow Temperatures

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6mm	260 + 0 ° C *	260 + 0 ° C *	260 + 0 ° C *
1.6mm – 2.5mm	260 + 0 ° C *	250 + 0 ° C *	245 + 0 ° C *
≥2.5mm	250 + 0 ° C *	245 + 0 ° C *	245 + 0 ° C *

^{*}Tolerance : The device manufacturer/supplier **shall** assure process compatibility up to and including the stated classification temperature(this mean Peak reflow temperature + 0 $^{\circ}$ C. For example 260+ 0 $^{\circ}$ C) at the rated MSL Level.

- Note 1: All temperature refer topside of the package. Measured on the package body surface.
- **Note 2:** The profiling tolerance is + 0 ° C, X ° C (based on machine variation capability)whatever is required to control the profile process but at no time will it exceed 5 ° C. The producer assures process compatibility at the peak reflow profile temperatures defined in Table –III.
- Note 3: Package volume excludes external terminals(balls, bumps, lands, leads) and/or non integral heat sinks.
- **Note 4:** The maximum component temperature reached during reflow depends on package the thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of SMD package may sill exist.
- **Note 5:** Components intended for use in a "lead-free" assembly process **shall** be evaluated using the "lead free" classification temperatures and profiles defined in Table-I II III whether or not lead free.

Table 10 Junction Temperature specification

(VDD =3 to 3.6 V, T_A = -25 to 85 °C, unless otherwise specified)

Symbol	Description	Condition		TYP	MAX	UNIT
ΘјΑ	Junction to Ambient			21.6		%C\M
	Thermal Resistance					
T _j	Junction	Ta (Ambient Temperature) -25 ℃	-7	-5.5	-4	$_{\infty}$
	Temperature					
T_j	Junction	Ta (Ambient Temperature) 25 ℃	43	44.5	46	$^{\circ}$
	Temperature					
T _j	Junction	Ta (Ambient Temperature) 85 ℃	103	104.5	106	$_{\infty}$
	Temperature					

Note: $T_j = Ta + \Theta jA$ * Power Consumption, MIN value comes from 3.0v VDD, TYP value comes from 3.3v VDD, MAX value comes from 3.6v VDD.

RF Point Pte Ltd

Exclusive RDA China Overseas Sales Agent

Table 11 Absolute Maximum ratings

Symbol	Description	MIN	MAX	UNIT
VDD	Power supply voltage	-0.3	3.6	V
T _{oper}	Operating ambient Temperature	-25	85	$_{\mathbb{C}}$
Tj	Junction Temperature		125	℃

RoHS Compliant

The product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE), and are therefore considered RoHS compliant.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electricity. Proper ESD techniques should be used when handling these devices.

RDA Microelectronics, Inc. RDA16110SW- Fully Integrated Satellite DVB-S/S2 dual receiver

Exclusive RDA China Overseas Sales Agent

Disclaimer

The information provided here is believed to be reliable; RDA Microelectronics assumes no reliability for inaccuracies and omissions. RDA Microelectronics assumes no reliability for the use of this information and all such information should entirely be at the user's own risk. Specifications described and contained here are subjected to change without notice on the purpose of improving the design and performance. All of this information described herein should not be implied or granted for any third party. RDA Microelectronics does not authorize or warrant any RDA products for use in the life support devices or systems. Copyright@2005 RDA Microelectronics Inc. All rights reserved

For technical questions and additional information about RDA Microelectronics Inc.:

Website: www.rdamicro.com Mailbox: info@rdamicro.com

RDA Microelectronics (Beijing), Inc. RDA Microelectronics (Shanghai), Inc.

Tel: +86-21-50271108 Tel: +86-10-63635360 Fax: +86-10-82612663 Fax: +86-21-50271099

For Sales office: RF Point Pte Ltd 362 Upper Paya Lebar #04-10 Da Jin Factory Building Singapore 534963

Tel: +65-98636485

Mailbox:RF.Point@yahoo.com